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The structure of a network can significantly influence the properties of the dynamical processes that take
place on them. While many studies have been paid to this influence, much less attention has been devoted to
the interplay and feedback mechanisms between dynamical processes and network topology on adaptive
networks. Adaptive rewiring of links can happen in real life systems such as acquaintance networks, where
people are more likely to maintain a social connection if their views and values are similar. In our study, we
consider different variants of a model for consensus formation. Our investigations reveal that the adaptation of
the network topology fosters cluster formation by enhancing communication between agents of similar opin-
ion, although it also promotes the division of these clusters. The temporal behavior is also strongly affected by
adaptivity: while, on static networks, it is influenced by percolation properties, on adaptive networks, both the
early and late time evolutions of the system are determined by the rewiring process. The investigation of a
variant of the model reveals that the scenarios of transitions between consensus and polarized states are more
robust on adaptive networks.
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I. INTRODUCTION AND MOTIVATION

The recent past has witnessed an important development
of the activities of statistical physicists in the area of social
sciences, motivated by the fact that statistical physics is the
natural field to study how global complex properties can
emerge from purely local rules. Statistical physics models
and tools have therefore been applied to the understanding of
issues related to the characterization of the collective social
behavior of individuals, such as culture dissemination, the
spreading of linguistic conventions, and the dynamics of
opinion formation �1�.

The statistical physics approach tries to grasp the essential
features of emerging social behaviors, and considers there-
fore simple rules of opinion formation in which agents up-
date their internal state, or opinion, through an interaction
with their neighbors. According to the “herding behavior”
described in sociology �2,3�, such an interaction typically
consists of agents the following the local majority �4–6� or
imitating a neighbor �7�. Starting from random initial condi-
tions, and without any global supervision, the system self-
organizes through an ordering process possibly leading to the
emergence of a global consensus, in which all agents share
the same opinion. Alternatively, the system can reach a state
of polarization, in which a finite number of groups with dif-
ferent opinions survive, or of fragmentation, with a final
number of opinions scaling with the system size.

In certain models, opinions are represented very schemati-
cally by a discrete variable which can take two values �0 or
1�, similarly to Ising spins; this is the case in the Voter model
�7�, for which, at each time step, an agent is chosen at ran-
dom and adopts the opinion of one of its neighbors. Some
additional realism on the modeling of opinions is put forward
in Axelrod’s model �8�, where opinions or culture are repre-
sented by a vector of cultural traits. Features such as memory
may also be introduced, with interesting new emerging be-
haviors �9–13�. Another refinement with respect to the use of

binary opinions is introduced in the Deffuant model �14�
where opinions are continuous variables �see also
�15,16,18,17��. The latter models also introduce the notion of
bounded confidence: an agent will interact with another
agent only if their opinions are close enough. The bounded
confidence is described by a tolerance parameter, and the
system can evolve towards different states of polarization
depending on the value of this parameter.

As a first natural step, many studies of such simple mod-
els have considered that each agent was allowed to interact
with all the others. This mean-field-like scenario can indeed
be realistic when dealing with a small number of agents.
Moreover, the case of agents embedded into low-
dimensional lattices has also been a topic of interest. Re-
cently, however, the growing field of complex networks
�19–23� has allowed us to obtain a better knowledge of so-
cial networks �24,25�, and in particular to show that the typi-
cal topology of the networks on which social agents interact
is not regular. Various studies have therefore considered the
evolution of the aforementioned models when agents are em-
bedded on more realistic networks, and studied the influence
of various complex topologies on the corresponding dynami-
cal behavior �see, for example, �26–29��.

Up to now, few studies have, however, considered the fact
that many networks have a dynamical nature, and that their
evolution occurs on a time scale that may have an impact on
the dynamical processes occurring between the nodes. Such
considerations are particularly relevant for social networks
which continuously evolve a priori on various time scales
�both fast and slow�. Moreover, the evolution of the topology
and the dynamical processes can drive each other with com-
plex feedback effects. The topology may indeed have an im-
pact on the evolution of the agents’ states, which in its turn
determines how the topology can be modified �30–36�: the
network becomes adaptive.

In this paper, we therefore investigate how the coevolu-
tion of an adaptive network of interacting agents and of the
agents’ opinions influence each other, and how the final state
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of the system depends on this coevolution. We focus on the
Deffuant model for which a large number of opinions can
coexist �and not only two as in the Voter model�. Moreover,
and in contrast with most other studies of evolving networks,
the rate of evolution of the network’s topology is tunable and
represents one of the parameters of the model. We focus on
simple evolution rules that do not require prior knowledge of
the state of agents to which new links are established. We
investigate the role of the various parameters such as the
tolerance of agents and the rate of topology evolution. We
show that the possibility of the interaction network to adapt
to the changes in the opinion of the agents has important
consequences on the evolution mechanisms and on the struc-
ture of the system’s final state.

The organization of the paper is as follows. In Sec. II, the
Deffuant model and the investigated quantities are defined.
In order to have a full description of the model, we start our
study with the opinion formation of static networks in Sec.
III. Then, the case of adaptive networks is considered in Sec.
IV in comparison with the static case. In this section, we
study the effects of the rewiring on the final state of the
consensus formation. Next, in Sec. V, the investigation of the
temporal behavior of the system gives us a deeper under-
standing of the processes taking place of adaptive networks.
Finally, in Sec. VI, a variant of the original Deffuant model
is considered on static and adaptive networks.

II. DEFINITION OF THE MODEL AND QUANTITIES
OF INTEREST

The model we consider is based on the Deffuant model
for interacting agents �14�. In this model, N agents �i
=1, . . . ,N� are endowed with a continuous opinion o which
can vary between 0 and 1 and is initially random. Two
agents, i and j can communicate a priori with each other if
they are connected by a link, i.e., if they are neighbors. At
each time step t, two neighboring agents are selected, and
they communicate if their opinions are close enough, i.e., if
�o�i , t�−o�j , t���d, where d defines the tolerance range or
threshold. In this case, the �local� communication tends to
bring the opinions even closer, according to the rule

o�i,t + 1� = o�i,t� + ��o�j,t� − o�i,t�� ,

o�j,t + 1� = o�j,t� − ��o�j,t� − o�i,t�� , �1�

where �� �0,1 /2� is a convergence parameter. For the sake
of simplicity we will consider the case of �=1 /2, which
corresponds to i and j adopting the same intermediate opin-
ion after communication �15�. The role of the tolerance
threshold has been characterized in the mean-field topology
where all agents are neighbors of each other. For large toler-
ance values, agents can easily communicate and converge to
a global consensus. On the contrary, small values of d natu-
rally lead to the final coexistence of several remaining opin-
ions.

In the present study, we consider more realistically that
agents have a limited number of neighbors. The initial inter-
action network structure is taken as an uncorrelated random

graph in which agents have k̄ acquaintances on average, i.e.,
the initial network corresponds to an Erdős-Rényi network
with average degree k̄.

In the next section, we will study for reference the case of
a static interaction network. This framework considers that
the topology of the agents’ interaction does not evolve, or
evolves at a rate that is infinitely slow with respect to the
communication between agents. It is, however, also interest-
ing to consider the fact that social interactions may evolve on
the same time scale as agents’ opinions, and possibly in a
way depending on these opinions. Agents indeed may break,
keep, or establish connections according to how much frus-
tration or reward they get from the corresponding relation-
ship. The network along which communication and possible
convergence of opinions occur then becomes time depen-
dent. Many possibilities can be thought of for modeling this
time evolution: links may, for example, decay at constant
rate, independently from the agents’ opinions �36�. Within
the framework of opinion dynamics with bounded confi-
dence, however, it seems natural to consider that only con-
nected agents having opinions which differ more than the
tolerance range may decide to terminate the relationship. In
order to keep the average number of interactions constant, a
new link is then introduced between one of the agents having
lost a connection and another agent. In our model, this new
link is established at random.1 Naturally, this new link can
break again if the newly connected agents have opinions that
are too far apart. The rewiring process thus occurs as a ran-
dom search for agents with close enough opinions.

The model therefore considers two coexisting dynamical
processes: local opinion convergence for agents whose opin-
ions are within the tolerance range, and rewiring process for
agents whose opinions differ more. The relative frequencies
of these two processes are quantified by the parameter w
� �0,1�. The precise rules of evolution are therefore summa-
rized as follows. At each time step t, a node i and one of its
neighbors j are chosen at random. With probability w, an
attempt to break the connection between i and j is made: if
�o�i , t�−o�j , t���d, a new node k is chosen at random and the
link �i , j� is rewired to �i ,k�.2 With probability 1−w on the
other hand, the opinions evolve according to �1� if they are
within the tolerance range. If w�0, the dynamics stops when
no link connects nodes with different opinions. This can cor-
respond either to a single connected network in which all
agents share the same opinion, or to several clusters repre-
senting different opinions. For w=0 on the other hand, the
dynamics stops when neighboring agents either share the
same opinion or differ of more than the tolerance d.

Using a semiformal algorithmic description let us rewrite
the steps of the simulation.

1Other models consider that the new connection is established
toward an agent with a similar opinion �30�; since this requires a
priori knowledge of the new agent’s opinion, and in fact therefore
of the whole system, we stick to a simpler hypothesis of a randomly
established new connection.

2One can also think of a different rewiring rule in which �i , j� is
rewired to �k , j�. While the global qualitative picture does not
change, the influence of this alternative rule deserves further inves-
tigation �37�.
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�1� Choose a node randomly, node i.
�2� Pick one of its neighbors, node j.
�3� Generate a random number, r, between 0 and 1.
�4� if �r�w�

then if ��o�i , t�−o�j , t���d�
then opinion convergence for i and j:

o�i,t + 1� = o�i,t� + ��o�j,t� − o�i,t�� ,

o�j,t + 1� = o�j,t� − ��o�j,t� − o�i,t�� .

fi
else if ��o�i , t�−o�j , t���d�

then update the link between i and j:
�a� Choose a random node, node k, which is nei-

ther i nor i’s neighbor.
�b� Break the link between i and j then connect i

with k.
fi

fi
�5� Start again from step 1.
The evolution of the system and its final state can be

characterized by the investigation of the opinion clusters of
agents. In the final state, such clusters are made of agents
sharing the same opinion. During the dynamical evolution,
however, many agents have close but not identical opinions,
so that we generalize the concept of opinion clusters in the
following way: two agents are considered as members of the
same opinion cluster if there is a path of agents in between
them on the interaction network where each consecutive
agent in the path has an opinion within the tolerance value of
the previous agent. This corresponds to the idea that there is
a channel of communication in between them to share ideas.
The notion of opinion clusters gives a natural way to keep
track of the structure of the system over the whole dynamical
process.

In the case of evolving �adaptive� networks, we also keep
track of the topological clusters which correspond simply to
the various connected components of the network. In the
final state, the topological and opinion cluster naturally co-
incide, while for static networks, a unique connected cluster
of agents can host several opinion clusters.

Before turning to a detailed analysis of the model, we
illustrate in Figs. 1 and 2 the different behaviors observed for
static and adaptive networks. The figures show the evolution
of the opinions of 250 out of N=1000 agents as a function of
time, in each case for one single realization of the dynamics
with d=0.15. The opinions are initially randomly distributed
on the interval �0,1�. When the interaction network is static,
local convergence processes take place and lead to a large
number of opinion clusters in the final state, with few mac-
roscopic size opinion clusters and many small size groups:
agents with similar opinions may be distant on the network
and not be able to communicate. This is in contrast with the
mean-field case in which all agents are linked together so
that the final opinion clusters are less numerous and more
separated in the opinion space. Figure 2, which corresponds
to an adaptive network with w=0.7, is strikingly in contrast
with the static case: no small groups are observed. We will

investigate these differences in more details in the next sec-
tions.

In particular, the whole cluster-size distribution gives a
complete description of the system. Interesting summaries
are given by the number of clusters and the size of the largest
and second-largest opinion clusters, which will tell us about
the behavior of the clusters with macroscopic size �because
of the possible large number of small clusters, the average
size may be biased towards small values and is therefore of
less interest�.

III. CONSENSUS FORMATION ON STATIC NETWORKS

Let us first consider for reference the Deffuant model on a
static Erdős-Rényi network. Figure 3 displays the average
relative size of the largest ��Smax� /N� and second-largest
opinion clusters ��S2� /N�� in the final state, as a function of
the tolerance parameter d, for various system sizes. Simula-
tions are averaged over 100 different networks. Three differ-

FIG. 1. �Color online� Evolution of the opinions of 25% of the
population, denoted by lines, for a system of 103 agents with toler-

ance d=0.15 and average degree k̄=5, on a static network for a
single run. The evolution of the opinion of a few individuals is
highlighted with color.

FIG. 2. �Color online� Same plot as for Fig. 1 for an adaptive

network when the rate of update is w=0.7 �N=103, k̄=5, and d
=0.15�.
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ent phases can be readily identified. At large tolerance values
d�d1, the system is in a consensus state, with a single
macroscopic-size cluster present in the final state. A jump of
�Smax� /N from a value close to 1 to a value close to 1 /2 is
observed around d1�0.256, together with the appearance of
a macroscopic second largest cluster. This jump becomes
sharper and sharper when the system size increases, hinting
at a first-order phase transition in the thermodynamic limit.

The evolution of the number of opinion clusters in the
final state, Nclust, sheds more light on the system’s behavior,
as shown in Fig. 4. For d�0.5, only one final cluster con-
taining all nodes is obtained. As d decreases, �Smax� /N de-
creases very slowly while �S2� /N remains close to 0 and
Nclusters increases: a large number of small clusters of finite
size appear. When d approaches and crosses the transition
point, an interesting nonmonotonic behavior is observed:
Nclusters decreases as the tolerance of the agents decreases
towards d1. This corresponds to the appearance of a second
largest cluster of large size. This second large cluster con-

tains agents with opinion o2 different from the largest clus-
ter’s opinion o1. The “global” tolerance range of these two
large clusters is therefore wider than if only one large cluster
of agents with the same opinion is present: it goes from
�o1−d ,o1+d� to the union �o1−d ,o1+d�� �o2−d ,o2+d� and
therefore allows to communicate with more agents and ob-
tain less small �finite size� clusters in the final state. The
larger this second cluster is, the less the finite-size clusters
remain isolated; therefore Nclusters decreases.

For d�d1, an apparently polarized state is entered, with
first- and second-largest clusters of similar extensive sizes.
The investigation of the number of clusters �Fig. 4� however
shows that the system is in a “false” polarized state, in which
the number of clusters increases with the system size. This
state therefore consists of a coexistence of macroscopic opin-
ion clusters with an extensive number of finite-size clusters.
As d decreases, the decrease of the sizes of the largest and
second-largest clusters is thus due to two reasons: the appear-
ance of more and more macroscopic-size clusters, as it is
also the case in the mean field, and the proliferation of finite-
size “microscopic” clusters. This last point is made more
explicit by the investigation of the whole cluster-size distri-
bution displayed in Fig. 5 for d=0.1. The figure shows that
the distribution of normalized sizes s=S /N is composed of
two parts,

�N
0 �s� � ��s�f0�N� + Q0�N,s� , �2�

where f0�N��N gives the number of isolated small clusters
and Q0 is a regular part describing clusters of macroscopic
size.

As d is even further decreased, �Smax� /N vanishes for d
�d2 in the thermodynamic limit, as shown in the inset of
Fig. 3. The final state of the system is then fragmented with
a number of clusters saturating at N as d→0 �see Fig. 4�.
This polarized-fragmented transition stems from the finite
connectivity of the agents and is akin to a percolation tran-
sition. It is indeed due to the fact that, if the tolerance is too
small, the probability for an agent to find another neighbor-
ing agent with whom to interact vanishes; the communica-
tion paths thus disappear from the network. Let us consider
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FIG. 3. �Color online� Size of the largest �empty symbols� and
second-largest �filled symbols� clusters in the final state, as a func-
tion of the tolerance value on a static Erdős-Rényi network with

average degree k̄=10 for different system sizes. The color coding is
the same for the first- and second-largest clusters with respect to the
system size. Inset: Same plot for the largest cluster zoomed into
small tolerance values near the polarized-fragmented transition.
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an agent i with k connections. The probability that a given
neighbor has initially an opinion within the tolerance range is
simply 2d so that the average number of neighbors with
whom he can communicate is 2dk. The condition for the
existence of percolating paths of close enough opinions is

thus simply k̄�1 / �2d�, and the transition to fragmentation is

expected at d2�1 / �2k̄�. Figure 6 displays the size of the
largest cluster in the final state as a function of d for various

values of the average degree k̄ of the network, showing in-
deed that the polarized-fragmented transition occurs at a tol-

erance value which scales as 1 / k̄.
We finally note that the polarized-fragmented transition is

expected to disappear if the interaction network is scale-free
with a diverging second moment of the degree distribution
�19�. The percolation transition indeed occurs at a vanishing
threshold in such networks in the thermodynamic limit. We
have indeed checked �not shown� that the polarized-
fragmented transition is then shifted to much smaller values
of d, vanishing in the thermodynamic limit.

IV. CONSENSUS FORMATION ON ADAPTIVE
NETWORKS

Let us now turn to the case of adaptive network in which
agents with far apart opinions can break their connection.
The rate of attempts to rewire connections is given by w: the
larger w, the faster rewiring can occur. Figure 7 displays the
sizes of the largest and second largest clusters in the final
state of the system, and Fig. 8 shows the total number of
clusters.

At large enough tolerance, a unique cluster gathering all
agents is obtained, as in the static case. As the tolerance
decreases, a consensus-to-polarized transition is also ob-
served, with the emergence of a second-largest cluster with
extensive size at d1�w�. The jump in �Smax� /N becomes
sharper as N increases, indicating a first order transition as in
the static case. Interestingly, we observe that d1�w� increases

with w �see inset of Fig. 7�: the more easily agents can
change their connections, the larger tolerance values are nec-
essary to achieve consensus: agents can more easily search
for other agents with whom they can communicate, and
break ties with the ones with too different opinions, so that
the formation of different clusters is favored.

As d decreases below d1, a polarized phase is observed.
While the sizes of the largest and second-largest clusters are
close to the case of a static network, important differences
have to be noted. First of all, in the adaptive network case,
each opinion cluster corresponds to a distinct connected
component in the final configuration. The network is there-
fore broken into Nclusters disconnected components, while the
static network remained connected by definition. Moreover,
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the number of clusters is much smaller for adaptive than for
static networks, and decreases as w increases, as shown in
Fig. 8.

More insight is given by the investigation of the normal-
ized cluster size distribution, shown in Fig. 9 for d=0.1 and

k̄=10. Similarly to the static case, it is formed of two parts,

�N
w�s� � ��s�fw�N� + Qw�N,s� , �3�

with fw�N��N	�w� as shown in Fig. 10, and Qw�N ,s� is the
distribution of clusters of macroscopic size that converges to
a regular finite distribution in the large-N limit.

The first part of the distribution corresponds to debris of
finite size. As can be seen in Fig. 10, on adaptive networks
�w�0� the expected size of the clusters in the debris is in-
creasing sublinearly with the system size, so that their weight
is vanishing compared to the system size, i.e., fw�N� /N→0
in the thermodynamic limit, while clusters of finite size com-

pose a finite fraction of the system in the static case �	�w
=0�=1�.

The polarized phase on adaptive networks is therefore dif-
ferent from the one on static networks: thanks to the possi-
bility of link rewiring, agents who would remain isolated �or
in very small groups� on a static network may manage to find
agents with whom to communicate and thus enter a macro-
scopic cluster. Without rewiring, on the other hand, a mac-
roscopic number of agents remain in fragmented components
which coexist with few macroscopic clusters.

As shown in Fig. 9, the regular part of the cluster size
distribution slightly shifts to smaller and smaller cluster sizes
as the rewiring rate w increases. This phenomenon is similar
to the shifting of the transition point between the consensus
and the polarized states: increasing the rewiring rate allows
agents to find more easily other agents with whom to com-
municate and the formation of smaller clusters is favored.

Figure 11 finally compares adaptive and static networks
for small values of the tolerance. Strikingly, the fragmented
phase disappears as soon as the rewiring of the links is en-
abled. The size of the largest component decays smoothly as
the tolerance decreases, but remains extensive, in contrast
with the static case. Rewiring processes thus allow the small
clusters to group together and reach extensive sizes even
below the polarized-to-fragmented transition, present only on
static networks.

The comparison of the static and adaptive cases shows
that the ability of the network to adapt as a consequence of
the opinion dynamics has strong consequences, which inter-
estingly are somehow opposite in the various tolerance
ranges and for the various types of clusters. On the one hand,
large clusters can be more easily broken by rewiring, and
global consensus is more difficult to reach. At intermediate
tolerance values, the extensive clusters are smaller when re-
wiring is enhanced. On the contrary, the small clusters of
finite size have opportunities to find agents with whom to
communicate, and therefore to merge with large clusters,
leading to a strongly decreased total number of clusters and
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to a true polarized state instead of a mixture of polarization
and fragmentation. At very small tolerance values finally, the
fragmentation transition even disappears, and extensive clus-
ters are obtained for arbitrarily small tolerance.

V. TEMPORAL BEHAVIOR

In the previous sections, we have focused on the final
state in which the system settles as a result of the interplay
between opinions’ and network’s dynamics. In order to better
understand the role of the different processes, we now con-
sider the time evolution of the clusters of agents. For the
static network, only opinion clusters evolve. On the other
hand, topological and opinion clusters are not identical for
adaptive network: a given connected component of the net-
work can host several opinion clusters.

First, as a reference, let us consider the temporal behavior
on static networks: In this case, the time of convergence
depends on the distance of d from the fragmented-to-
polarized transition, d2. For large tolerance values, d2�d,
the convergence time grows linearly with the system size
�data not shown� and it increases as d→d2 since, in this limit
in the percolating opinion clusters, the average length of the
communication path between two nodes increases �38� and
the clusters are becoming more and more treelike. Near d2,
the average length of the communication channel between
two nodes in an opinion cluster grows as a nontrivial power
of the system size �39� which in turn raises the possibility of
a convergence time which grows faster than linearly with the
system size �not shown�. For d�d2, the convergence time
grows linearly with logarithmic corrections with respect to
the system size. Though, it decreases as the tolerance of the
agents decreases since the size of the treelike opinion clus-
ters also decreases. For very small tolerance values �d�d2�,
the system in fact almost does not evolve since agents rarely
find neighbors with whom they can communicate.

In the case of adaptive networks, Fig. 12 shows the evo-
lution of the number of opinion clusters NOC and of topologi-

cal clusters �connected components� NTC. The figures clearly
show the existence of three different timescales for the clus-
ters’ evolution. In the initial configuration, a large number of
separate opinion clusters are found, corresponding to perco-
lation clusters; their number is naturally larger for smaller
tolerance values and smaller k̄. The early-time evolution is
then mostly determined by the adaptive nature of the net-
work which allows agents to look for other agents with simi-
lar opinions. The importance of this early-time behavior can
be particularly emphasized in the small tolerance regime
which would lead to a fragmented state for a static network.
As shown in Fig. 12, indeed, the number of opinion clusters
decreases very fast, from an extensive to a finite number,
while the network is still globally connected �NTC=1�. The
possibility of rewiring connections allows therefore percolat-
ing or macroscopic clusters to be formed even at small tol-
erance values, which explains the disappearance of the frag-
mented phase. The characteristic time of this phenomenon is
given by the time necessary for an agent to find at least one
partner “to be able to communicate with,” tf. If the rewiring
rate w is large, NOC reaches a minimum before increasing
again when opinions evolve. An opinion cluster indeed hosts
agents that are connected by a path of potential communica-
tion, but even neighboring agents’ opinions can evolve and
drift further apart due to interactions with other neighbors.
An opinion cluster can therefore divide itself into several
clusters because of the opinion dynamics, and NOC increases.
The corresponding time scale to describes the formation of
groups of agents with identical opinions on a still connected
network. Finally, after the formation of groups with uniform
opinions, the number of topological clusters increases and
converges to the number of opinion clusters. This last phase
therefore corresponds to a breaking of the links that join
opinion clusters with different opinions. The time scale of
this final change, tl, characterizes the time needed by an
agent to rewire its links with agents out of his tolerance
range towards agents with the same opinion. Depending on
the parameters of the system, this final regime can take place
at time scales either much larger than those associated with
the opinion cluster formation, or on similar time scales. The
two possibilities are illustrated in both Figs. 12 and 13. The
case of widely separated time scales allows us to consider
that the opinion dynamics and rewiring process occur inde-
pendently, with links evolving between fixed opinion clus-
ters; further investigation is then possible and a mean-field
analysis allows one to gain insight into the clusters’ topologi-
cal structure �37�.

The dependence of the various time scales on the param-
eters can be estimated as follows.

�i� Initially, there is always a finite fraction of separated
nodes, loners, which are not members of any percolating
opinion clusters both below and above the fragmented-to-
polarized transition. Therefore the time characterizing the
transition of NOC from an extensive to a finite value is tf. A
typical loner has no neighbor with whom to communicate in
the initial configuration. The time needed to rewire any of its
links is proportional to 1 /w, and the probability to find an
agent within tolerance range is 2d, so that

tf � 1/�wd� . �4�
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�ii� The estimation of the time scale of the opinion evolu-
tion is a more complex task. In all cases, opinions evolve at
a rate �1−w�, so that to��o / �1−w�, where �o is yet to be
characterized. For low rewiring rates and when d�d2, the
success rate of the discussions are determined by the ratio of
newly found friendly neighbors and the average degree of
the node. Therefore, the larger is this ratio, the smaller is �o.
When dd2, a typical agent can successfully communicate
with the 2d fraction of his friends irrespectively of his de-

gree. Therefore �o can only depend weakly on k̄ in this case
�see Fig. 13�. Before considering the behavior of to for high
rewiring rates, the scaling of tl can be estimated as follows.

�iii� For any d values, links are updated with frequency w.
Let us consider a typical opinion cluster. The number of its
links which need to be rewired is proportional to the total

number of links ��k̄N�, and to the amount of opinions out-
side of the tolerance range ���1−2d��. The probability to
rewire toward a close enough opinion is moreover propor-
tional to d, so that

tl � k̄�1 − 2d�/�wd� . �5�

For low rewiring rates, tl is the longest time scale of the time
evolution; therefore the convergence time also scales as tl.

For high rewiring rates, it is possible for a typical agent to
successfully rewire all his links to point to agents with tol-
erable opinions before committing himself to changing his
own opinion. This situation takes place when tl is less than or
comparable to 1 / �1−w�. In this case, almost all of the nego-
tiations are successful and both the convergence time and to
are expected to be proportional to 1 / �1−w�. However, obser-
vations show that the situation is more convoluted: as the
tolerance of the agents increases, fewer and fewer opinion
clusters are present in the system. Nevertheless, the disap-
pearance of a cluster in many cases happen by an initial
unsuccessful attempt to form two or more separate clusters
which eventually merge into one. During this initial evolu-

tion most of the links are broken between these communities
and the convergence to a common opinion is only mediated
by few individuals connected to both groups �see, for ex-
ample, the red curve in Fig. 2�. These individuals form a
narrow channel of communication between the two commu-
nities throughout the process resulting in very long conver-
gence times in certain regimes of tolerance values.

Similar merging of communities can be also be observed
on static networks though their behavior is less drastic �see
Fig. 1�. Even if the merging is started by few individuals,
similarly to what happens on adaptive networks, as soon as
the average opinion of the two communities become close to
each other, the members of the two communities suddenly
engage in fruitful discussions and their opinions converge
rapidly to a uniform value.

Finally, Fig. 12 illustrates how the time scale of opinion
evolution increases when w increases, and how the separa-
tion between to and tl increases as the tolerance d is reduced,
so that a change of parameters can lead from similar to well
separated timescales. Figure 13, moreover, shows that an in-
crease in the average degree also leads to more and more
separated time scales, as seen from the arguments in point
�ii� above and Eq. �5�.

VI. A VARIANT OF THE MODEL

The Deffuant model considers agents that have a certain
tolerance range and can strictly not communicate with agents
having opinions outside this range. This drastic behavior can
seem unrealistic, and we consider here a variation of the
model in which agents still have a finite probability to com-
municate event if their initial opinions are far apart. While
various extensions of the update rules could be considered,
we limit our study to the following simple generalization of
the model: if agents i and j have close enough opinions, i.e.,
if �o�i�−o�j���d, they adopt the same intermediate opinion
�o�i�+o�j�� /2; if �o�i�− �o�j����d, on the other hand, the
opinions of the two agents converge to their mean value with
probability

p = e1−�o�i�−o�j��/d. �6�

In the exponent, the 1 term is present to make the probability
p continuous when �o�i�−o�j��=d. The rewiring rule is also
changed: two agents may break their connection to each
other only if they are outside each other’s tolerance range
and, in this case, they do it with probability

prw = 1 − e1−�o�i�−o�j��/d. �7�

In this probabilistic model, consensus is always achieved
on any static network, since any couple of neighboring
agents always have some probability to communicate and
reach the same opinion. Decreasing the tolerance of the
agents only increases the corresponding convergence time
�not shown�. On adaptive networks however, the rewiring
rule allows opinion clusters to separate, and a picture similar
to the one of the original Deffuant model is obtained, as
shown in Fig. 14, with a transition between a consensus state
at large tolerance to a polarized state as d decreases. The
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transition is also shifted to larger and larger tolerance values
as w increases. It is interesting to compare the effect of re-
wiring on the system with the original consensus-formation
rules and in the case of this variant when d�d2: in the origi-
nal model, rewiring drove the system to a more homoge-
neous �polarized� state than that observed on static networks
�where fragmentation is obtained�; while, in this variant of
the model, rewiring drives the system to a more inhomoge-
neous state �polarized� than that on static networks �which is
a consensus reached in very long times�.

Interestingly, the behavior of the model on adaptive net-
works is in fact more robust than on static networks, since
the same global picture is observed for strict or probabilistic
communication rules, while a strong difference is obtained
on static networks.

VII. CONCLUSIONS

In this paper, we have studied consensus formation on
static and adaptive networks through the investigation of a
simple model of opinion dynamics with bounded confidence:
agents with close enough opinions reach an agreement, while
they can not communicate if their opinions are too far apart.
When the agents are linked through a static interaction net-
work, two transitions are found: at large tolerance values, a
global consensus is reached; intermediate tolerance leads to a
coexistence of several extensive groups or clusters of agents
sharing a common opinion with a large number of small
�finite-size� clusters. At very small tolerance values finally, a
fragmented state is obtained, with an extensive number of
small groups. This is in contrast with the mean-field case in
which the number of groups is, roughly speaking, the inverse
of the tolerance range.

When agents can rewire their links in a way depending on
the opinions of their neighbors, i.e., break connections with
neighbors with far apart opinions, the situation changes in
various ways. At large tolerance values, the polarization tran-
sition is shifted since rewiring makes it easier for a large
connected cluster to be broken in various parts. The possi-
bility of network topological change therefore renders global
consensus more difficult to achieve. On the other hand, for
smaller tolerance values, the number of finite-size clusters is
drastically reduced since agents can more easily find other
agents with whom to reach an agreement. A real polarized
phase is thus obtained, and the transition to a fragmented
state is even suppressed: extensive clusters are obtained even
at very low tolerance.

The detailed investigation of the system’s time evolution
reveals that the rewiring dynamics plays an important role
both at early and late times: at early times, adaptive rewiring
enhances communication between agents and fosters giant
cluster formation while, at late times, adaptation results in
the breakup of the network into separate clusters after �or
while� opinions evolve locally. The various involved time
scales depend on the model’s parameters and can be either
well separated or similar.

Finally, we have considered changes in the microscopic
rule of opinion evolution, from a strict and maybe unrealistic
rule of sharp tolerance threshold to a smoother decrease of
communication when opinions are further apart. Interest-
ingly, such a change has a dramatic effect when the interac-
tion network is fixed, since the system then always reaches
consensus. The scenario of adaptive networks is, however,
more robust, with a transition between consensus and polar-
ized states as the tolerance is decreased. This emphasizes the
relevance of considering the possibility of evolving topolo-
gies when studying the emergence of collective behavior in
models for opinion formation.

Further investigations will consider the detailed topologi-
cal structure of the clusters or groups of agents sharing the
same opinion �37�, and the evolution of other models for
opinion dynamics on adaptive networks, where for example
bounded confidence is either absent �such as the Voter
model� or replaced by negotiation processes �such as the
naming game�. In such models, the asymmetry of the relation
between the agents involved in an interaction has been
shown to have further interesting effects on static networks
�12,28,40�, and can be expected to couple with the network
evolution with new and relevant consequences �41�.
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